Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Commun Biol ; 5(1): 415, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1890280

ABSTRACT

IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression. Analysis of immune transcriptome of rhinovirus-infected differentiated asthmatic bronchial epithelial cells (BECs) treated with an anti-IL-25 monoclonal antibody (LNR125) revealed a re-calibrated response defined by increased type I/III IFN and reduced expression of type-2 immune genes CCL26, IL1RL1 and IL-25 receptor. LNR125 treatment also increased type I/III IFN expression by coronavirus infected BECs. Exogenous IL-25 treatment increased viral load with suppressed innate immunity. In vivo LNR125 treatment reduced IL-25/type 2 cytokine expression and increased IFN-ß expression and reduced lung viral load. We define a new immune-regulatory role for IL-25 that directly inhibits virus induced airway epithelial cell innate anti-viral immunity.


Subject(s)
Asthma , Interleukin-17/immunology , Virus Diseases , Antiviral Agents/pharmacology , Asthma/metabolism , Humans , Immunity, Innate , Rhinovirus
2.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L926-L931, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-951850

ABSTRACT

The recurrent emergence of novel, pathogenic coronaviruses (CoVs) severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1; 2002), Middle East respiratory syndrome (MERS)-CoV (2012), and most recently SARS-CoV-2 (2019) has highlighted the need for physiologically informative airway epithelial cell infection models for studying immunity to CoVs and development of antiviral therapies. To address this, we developed an in vitro infection model for two human coronaviruses; alphacoronavirus 229E-CoV (229E) and betacoronavirus OC43-CoV (OC43) in differentiated primary human bronchial epithelial cells (pBECs). Primary BECs from healthy subjects were grown at air-liquid interface (ALI) and infected with 229E or OC43, and replication kinetics and time-course expression of innate immune mediators were assessed. OC43 and 229E-CoVs replicated in differentiated pBECs but displayed distinct replication kinetics: 229E replicated rapidly with viral load peaking at 24 h postinfection, while OC43 replication was slower peaking at 96 h after infection. This was associated with diverse antiviral response profiles defined by increased expression of type I/III interferons and interferon-stimulated genes (ISGs) by 229E compared with no innate immune activation with OC43 infection. Understanding the host-virus interaction for previously established coronaviruses will give insight into pathogenic mechanisms underpinning SARS-CoV-2-induced respiratory disease and other future coronaviruses that may arise from zoonotic sources.


Subject(s)
Antiviral Agents/pharmacology , Bronchi/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Epithelial Cells/immunology , Virus Replication/drug effects , Bronchi/drug effects , Bronchi/virology , Cells, Cultured , Coronavirus 229E, Human/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Epithelial Cells/drug effects , Epithelial Cells/virology , Humans , Interferons/metabolism , Interferon Lambda
3.
J Allergy Clin Immunol ; 147(2): 510-519.e5, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-872184

ABSTRACT

BACKGROUND: The mechanisms underlying altered susceptibility and propensity to severe Coronavirus disease 2019 (COVID-19) disease in at-risk groups such as patients with chronic obstructive pulmonary disease (COPD) are poorly understood. Inhaled corticosteroids (ICSs) are widely used in COPD, but the extent to which these therapies protect or expose patients to risk of severe COVID-19 is unknown. OBJECTIVE: The aim of this study was to evaluate the effect of ICSs following pulmonary expression of the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme-2 (ACE2). METHODS: We evaluated the effect of ICS administration on pulmonary ACE2 expression in vitro in human airway epithelial cell cultures and in vivo in mouse models of ICS administration. Mice deficient in the type I IFN-α/ß receptor (Ifnar1-/-) and administration of exogenous IFN-ß were used to study the functional role of type-I interferon signaling in ACE2 expression. We compared sputum ACE2 expression in patients with COPD stratified according to use or nonuse of ICS. RESULTS: ICS administration attenuated ACE2 expression in mice, an effect that was reversed by exogenous IFN-ß administration, and Ifnar1-/- mice had reduced ACE2 expression, indicating that type I interferon contributes mechanistically to this effect. ICS administration attenuated expression of ACE2 in airway epithelial cell cultures from patients with COPD and in mice with elastase-induced COPD-like changes. Compared with ICS nonusers, patients with COPD who were taking ICSs also had reduced sputum expression of ACE2. CONCLUSION: ICS therapies in COPD reduce expression of the SARS-CoV-2 entry receptor ACE2. This effect may thus contribute to altered susceptibility to COVID-19 in patients with COPD.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 , Interferon Type I/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/immunology , SARS-CoV-2 , Administration, Inhalation , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Bronchi/cytology , Cells, Cultured , Disease Susceptibility , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/immunology , Female , Humans , Interferon Type I/immunology , Lung/drug effects , Lung/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Pulmonary Disease, Chronic Obstructive/genetics , Receptor, Interferon alpha-beta/genetics , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL